Activation of presynaptic GABA(A) receptors induces glutamate release from parallel fiber synapses.

نویسندگان

  • Brandon M Stell
  • Philippe Rostaing
  • Antoine Triller
  • Alain Marty
چکیده

The parallel fibers relay information coming into the cerebellar cortex from the mossy fibers, and they form synapses with molecular layer interneurons (MLIs) and Purkinje cells. Here we show that activation of ionotropic GABA receptors (GABA(A)Rs) induces glutamate release from parallel fibers onto both MLIs and Purkinje cells. These GABA-induced EPSCs have kinetics and amplitudes identical to random spontaneous currents (sEPSCs), but, unlike sEPSCs, they occur in bursts of between one and five successive events. The variation in amplitude of events within bursts is significantly less than the variation of all sEPSC amplitudes, suggesting that the bursts result from repetitive activation of single presynaptic fibers. Electron microscopy of immunogold-labeled alpha-1 subunits revealed GABA(A)Rs on parallel fiber terminals. We suggest that the activation of these receptors underlies the increased amplitude of parallel fiber-evoked Purkinje cell EPSCs seen with application of exogenous GABA or after the release of GABA from local interneurons. These results occur only when molecular layer GABA(A)Rs are activated, and the effects are abolished when the receptors are blocked by the GABA(A)R antagonist gabazine (5 microM). From these data, we conclude that GABA(A)Rs located on parallel fibers depolarize parallel fiber terminals beyond the threshold for Na+ channel activation and thereby induce glutamate release onto MLIs and Purkinje cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brief bursts of parallel fiber activity trigger calcium signals in bergmann glia.

Changes in synaptic strength during ongoing activity are often mediated by neuromodulators. At the synapse between cerebellar granule cell parallel fibers (PFs) and Purkinje cells (PCs), brief bursts of stimuli can evoke endocannabinoid release from PCs and GABA release from interneurons that both inhibit transmission by activating presynaptic G-protein-coupled receptors. Studies in several bra...

متن کامل

Somatodendritic release of glutamate regulates synaptic inhibition in cerebellar Purkinje cells via autocrine mGluR1 activation.

In the cerebellum, the process of retrograde signaling via presynaptic receptors is important for the induction of short- and long-term changes in inhibitory synaptic transmission at interneuron-Purkinje cell (PC) synapses. Endocannabinoids, by activating presynaptic CB1 receptors, mediate a short-term decrease in inhibitory synaptic efficacy, whereas glutamate, acting on presynaptic NMDA recep...

متن کامل

The GABAB1a isoform mediates heterosynaptic depression at hippocampal mossy fiber synapses.

GABA(B) receptor subtypes are based on the subunit isoforms GABA(B1a) and GABA(B1b), which associate with GABA(B2) subunits to form pharmacologically indistinguishable GABA(B(1a,2)) and GABA(B(1b,2)) receptors. Studies with mice selectively expressing GABA(B1a) or GABA(B1b) subunits revealed that GABA(B(1a,2)) receptors are more abundant than GABA(B(1b,2)) receptors at glutamatergic terminals. ...

متن کامل

Role of presynaptic kainate receptors at parallel fiber-purkinje cell synapses in induction of cerebellar LTD: interplay with climbing fiber input.

Until recently, except for A1 adenosine, N-methyl-d-aspartate, and cannabinoid receptors, little effort has been made to unravel possible roles of parallel fiber (PF) presynaptic receptors in long-term depression (LTD) of synaptic transmission at PF-Purkinje cell (PC) synapses. Presynaptic kainate (KA) receptors are also present on PFs and might also influence LTD induction by modulating glutam...

متن کامل

Biphasic modulation of GABA release from stellate cells by glutamatergic receptor subtypes.

The release of inhibitory transmitters from CNS neurons can be modulated by ionotropic glutamate receptors that are present in the presynaptic terminals. In the cerebellum, glutamate released from climbing fibers (but not from parallel fibers) activates presynaptic AMPA receptors and suppresses the release of the inhibitory transmitter GABA from basket cells onto postsynaptic Purkinje cells. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 34  شماره 

صفحات  -

تاریخ انتشار 2007